27 research outputs found

    Memory vectors for similarity search in high-dimensional spaces

    Get PDF
    We study an indexing architecture to store and search in a database of high-dimensional vectors from the perspective of statistical signal processing and decision theory. This architecture is composed of several memory units, each of which summarizes a fraction of the database by a single representative vector. The potential similarity of the query to one of the vectors stored in the memory unit is gauged by a simple correlation with the memory unit's representative vector. This representative optimizes the test of the following hypothesis: the query is independent from any vector in the memory unit vs. the query is a simple perturbation of one of the stored vectors. Compared to exhaustive search, our approach finds the most similar database vectors significantly faster without a noticeable reduction in search quality. Interestingly, the reduction of complexity is provably better in high-dimensional spaces. We empirically demonstrate its practical interest in a large-scale image search scenario with off-the-shelf state-of-the-art descriptors.Comment: Accepted to IEEE Transactions on Big Dat

    Improving Image Recognition by Retrieving from Web-Scale Image-Text Data

    Full text link
    Retrieval augmented models are becoming increasingly popular for computer vision tasks after their recent success in NLP problems. The goal is to enhance the recognition capabilities of the model by retrieving similar examples for the visual input from an external memory set. In this work, we introduce an attention-based memory module, which learns the importance of each retrieved example from the memory. Compared to existing approaches, our method removes the influence of the irrelevant retrieved examples, and retains those that are beneficial to the input query. We also thoroughly study various ways of constructing the memory dataset. Our experiments show the benefit of using a massive-scale memory dataset of 1B image-text pairs, and demonstrate the performance of different memory representations. We evaluate our method in three different classification tasks, namely long-tailed recognition, learning with noisy labels, and fine-grained classification, and show that it achieves state-of-the-art accuracies in ImageNet-LT, Places-LT and Webvision datasets.Comment: Accepted to CVPR 202

    A Memory Transformer Network for Incremental Learning

    Full text link
    We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from. Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes. One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks. In our paper, we propose to enhance the utilization of this memory bank: we not only use it as a source of additional training data like existing works but also integrate it in the prediction process explicitly.Our method, the Memory Transformer Network (MTN), learns how to combine and aggregate the information from the nearest neighbors in the memory with a transformer to make more accurate predictions. We conduct extensive experiments and ablations to evaluate our approach. We show that MTN achieves state-of-the-art performance on the challenging ImageNet-1k and Google-Landmarks-1k incremental learning benchmarks

    Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations

    Get PDF
    CVPR 2017Query expansion is a popular method to improve the quality of image retrieval with both conventional and CNN representations. It has been so far limited to global image similarity. This work focuses on diffusion, a mechanism that captures the image manifold in the feature space. The diffusion is carried out on descriptors of overlapping image regions rather than on a global image descriptor like in previous approaches. An efficient off-line stage allows optional reduction in the number of stored regions. In the on-line stage, the proposed handling of unseen queries in the indexing stage removes additional computation to adjust the precomputed data. We perform diffusion through a sparse linear system solver, yielding practical query times well below one second. Experimentally, we observe a significant boost in performance of image retrieval with compact CNN descriptors on standard benchmarks, especially when the query object covers only a small part of the image. Small objects have been a common failure case of CNN-based retrieval

    Marchés agricoles, Prix. 3/1994. = "Agricultural Markets, Prices. 3/1994.

    Get PDF
    Despite the success of deep learning on representing images for particular object retrieval, recent studies show that the learned representations still lie on manifolds in a high dimensional space. This makes the Euclidean nearest neighbor search biased for this task. Exploring the mani-folds online remains expensive even if a nearest neighbor graph has been computed offline. This work introduces an explicit embedding reducing manifold search to Euclidean search followed by dot product similarity search. This is equivalent to linear graph filtering of a sparse signal in the frequency domain. To speed up online search, we compute an approximate Fourier basis of the graph offline. We improve the state of art on particular object retrieval datasets including the challenging Instre dataset containing small objects. At a scale of 10 5 images, the offline cost is only a few hours, while query time is comparable to standard similarity search

    AVIS: Autonomous Visual Information Seeking with Large Language Model Agent

    Full text link
    In this paper, we propose an autonomous information seeking visual question answering framework, AVIS. Our method leverages a Large Language Model (LLM) to dynamically strategize the utilization of external tools and to investigate their outputs, thereby acquiring the indispensable knowledge needed to provide answers to the posed questions. Responding to visual questions that necessitate external knowledge, such as "What event is commemorated by the building depicted in this image?", is a complex task. This task presents a combinatorial search space that demands a sequence of actions, including invoking APIs, analyzing their responses, and making informed decisions. We conduct a user study to collect a variety of instances of human decision-making when faced with this task. This data is then used to design a system comprised of three components: an LLM-powered planner that dynamically determines which tool to use next, an LLM-powered reasoner that analyzes and extracts key information from the tool outputs, and a working memory component that retains the acquired information throughout the process. The collected user behavior serves as a guide for our system in two key ways. First, we create a transition graph by analyzing the sequence of decisions made by users. This graph delineates distinct states and confines the set of actions available at each state. Second, we use examples of user decision-making to provide our LLM-powered planner and reasoner with relevant contextual instances, enhancing their capacity to make informed decisions. We show that AVIS achieves state-of-the-art results on knowledge-intensive visual question answering benchmarks such as Infoseek and OK-VQA.Comment: Published on NeurIPS 202

    REVEAL: Retrieval-Augmented Visual-Language Pre-Training with Multi-Source Multimodal Knowledge Memory

    Full text link
    In this paper, we propose an end-to-end Retrieval-Augmented Visual Language Model (REVEAL) that learns to encode world knowledge into a large-scale memory, and to retrieve from it to answer knowledge-intensive queries. REVEAL consists of four key components: the memory, the encoder, the retriever and the generator. The large-scale memory encodes various sources of multimodal world knowledge (e.g. image-text pairs, question answering pairs, knowledge graph triplets, etc) via a unified encoder. The retriever finds the most relevant knowledge entries in the memory, and the generator fuses the retrieved knowledge with the input query to produce the output. A key novelty in our approach is that the memory, encoder, retriever and generator are all pre-trained end-to-end on a massive amount of data. Furthermore, our approach can use a diverse set of multimodal knowledge sources, which is shown to result in significant gains. We show that REVEAL achieves state-of-the-art results on visual question answering and image captioning

    Mémoires continues représentant des ensembles de vecteurs et des collections d’images

    No full text
    In this thesis, we study the indexing and query expansion problems in image retrieval. The former sacrifices the accuracy for efficiency, whereas the latter takes the opposite perspective and improves accuracy with additional cost. Our proposed solutions to both problems consist of utilizing continuous representations of a set of vectors. We turn our attention to indexing first, and follow the group testing scheme. We assign each dataset vector to a group, and represent each group with a single vector representation. We propose memory vectors, whose solution is optimized under the membership test hypothesis. The optimal solution for this problem is based on Moore-Penrose pseudo-inverse, and shows superior performance compared to basic sum pooling. We also provide a data-driven approach optimizing the assignment and representation jointly. The second half of the transcript focuses on the query expansion problem, representing a set of vectors with weighted graphs. This allows us to retrieve objects that lie on the same manifold, but further away in Euclidean space. We improve the efficiency of our technique even further, creating high-dimensional diffusion embeddings offline, so that they can be compared with a simple dot product in the query time. For both problems, we provide thorough experiments and analysis in well-known image retrieval benchmarks and show the improvements achieved by proposed methods.Cette thèse étudie l'indexation et le mécanisme d'expansion de requête en recherche d'image. L'indexation sacrifie la qualité de la recherche pour une plus grande efficacité; l'expansion de requête prend ce compromis dans l'autre sens : il améliore la qualité de la recherche avec un coût en complexité additionnel. Nous proposons des solutions pour les deux approches qui utilisent une représentation continue d'un ensemble de vecteurs. Pour l'indexation, notre solution est basée sur le test par groupe. Chaque vecteur image est assigné à un groupe, et chaque groupe est représenté par un seul vecteur. C'est la représentation continue de l'ensemble des vecteur du groupe. L'optimisation de cette représentation pour produire un bon test d'appartenance donne une solution basée sur la pseudo-inverse de Moore-Penrose. Elle montre des performances supérieures à celles d'une somme basique des vecteurs du groupe. Nous proposons aussi une alternative suivant au plus près les vecteurs-images de la base. Elle optimise conjointement l'assignation des vecteurs images à des groupes ainsi que la représentation vectorielle de ces groupes. La deuxième partie de la thèse étudie le mécanisme d'expansion de requête au moyen d'un graphe pondéré représentant les vecteurs images. Cela permet de retrouver des images similaires le long d'une même variété géométrique, mais éloignées en distance Euclidienne. Nous donnons une implémentation ultra-rapide de ce mécanisme en créant des représentations vectorielles incorporant la diffusion. Ainsi, le mécanisme d'expansion se réduit à un simple produit scalaire entre les représentations vectorielles lors de la requête. Les deux parties de la thèse fournissent une analyse théorique et un travail expérimental approfondi utilisant les protocoles et les jeux de données standards en recherche d'images. Les méthodes proposées ont des performances supérieures à l'état de l'art

    Mémoires continues représentant des ensembles de vecteurs et des collections d’images

    Get PDF
    In this thesis, we study the indexing and query expansion problems in image retrieval. The former sacrifices the accuracy for efficiency, whereas the latter takes the opposite perspective and improves accuracy with additional cost. Our proposed solutions to both problems consist of utilizing continuous representations of a set of vectors. We turn our attention to indexing first, and follow the group testing scheme. We assign each dataset vector to a group, and represent each group with a single vector representation. We propose memory vectors, whose solution is optimized under the membership test hypothesis. The optimal solution for this problem is based on Moore-Penrose pseudo-inverse, and shows superior performance compared to basic sum pooling. We also provide a data-driven approach optimizing the assignment and representation jointly. The second half of the transcript focuses on the query expansion problem, representing a set of vectors with weighted graphs. This allows us to retrieve objects that lie on the same manifold, but further away in Euclidean space. We improve the efficiency of our technique even further, creating high-dimensional diffusion embeddings offline, so that they can be compared with a simple dot product in the query time. For both problems, we provide thorough experiments and analysis in well-known image retrieval benchmarks and show the improvements achieved by proposed methods.Cette thèse étudie l'indexation et le mécanisme d'expansion de requête en recherche d'image. L'indexation sacrifie la qualité de la recherche pour une plus grande efficacité; l'expansion de requête prend ce compromis dans l'autre sens : il améliore la qualité de la recherche avec un coût en complexité additionnel. Nous proposons des solutions pour les deux approches qui utilisent une représentation continue d'un ensemble de vecteurs. Pour l'indexation, notre solution est basée sur le test par groupe. Chaque vecteur image est assigné à un groupe, et chaque groupe est représenté par un seul vecteur. C'est la représentation continue de l'ensemble des vecteur du groupe. L'optimisation de cette représentation pour produire un bon test d'appartenance donne une solution basée sur la pseudo-inverse de Moore-Penrose. Elle montre des performances supérieures à celles d'une somme basique des vecteurs du groupe. Nous proposons aussi une alternative suivant au plus près les vecteurs-images de la base. Elle optimise conjointement l'assignation des vecteurs images à des groupes ainsi que la représentation vectorielle de ces groupes. La deuxième partie de la thèse étudie le mécanisme d'expansion de requête au moyen d'un graphe pondéré représentant les vecteurs images. Cela permet de retrouver des images similaires le long d'une même variété géométrique, mais éloignées en distance Euclidienne. Nous donnons une implémentation ultra-rapide de ce mécanisme en créant des représentations vectorielles incorporant la diffusion. Ainsi, le mécanisme d'expansion se réduit à un simple produit scalaire entre les représentations vectorielles lors de la requête. Les deux parties de la thèse fournissent une analyse théorique et un travail expérimental approfondi utilisant les protocoles et les jeux de données standards en recherche d'images. Les méthodes proposées ont des performances supérieures à l'état de l'art
    corecore